尊龙凯时官网,尊龙凯时,AG尊龙凯时,尊龙娱乐,尊龙体育,尊龙凯时人生就是搏,尊龙凯时体育,尊龙凯时平台,ag尊龙,尊龙平台,尊龙,尊龙官网,尊龙登录入口,尊龙官方网站,尊龙app下载,尊龙凯时APP下载尊龙凯时官网,尊龙凯时,AG尊龙凯时,尊龙娱乐,尊龙体育,尊龙凯时人生就是搏,尊龙凯时体育,尊龙凯时平台,ag尊龙,尊龙平台,尊龙,尊龙官网,尊龙登录入口,尊龙官方网站,尊龙app下载,尊龙凯时APP下载尊龙凯时官网,尊龙凯时,AG尊龙凯时,尊龙娱乐,尊龙体育,尊龙凯时人生就是搏,尊龙凯时体育,尊龙凯时平台,ag尊龙,尊龙平台,尊龙,尊龙官网,尊龙登录入口,尊龙官方网站,尊龙app下载,尊龙凯时APP下载尊龙凯时官网,尊龙凯时,AG尊龙凯时,尊龙娱乐,尊龙体育,尊龙凯时人生就是搏,尊龙凯时体育,尊龙凯时平台,ag尊龙,尊龙平台,尊龙,尊龙官网,尊龙登录入口,尊龙官方网站,尊龙app下载,尊龙凯时APP下载
目前的开源生态对于日志数据有丰富的解决方案,其中上文所述的每个模块的可选方案如下图。以 Elasticsearch 作为存储核心组件为例,采集端可以使用其生态相关的 Beats 组建,消息队列则使用最流行的 Kafka,数据计算使用 Flink(Logstash 在计算性能上表现一般),可视化组件使用 Kibana。从这个案例可以看到,通过开原生态搭建完整的解决方案在技术上是可行的,但是实施复杂度很高,需要维护多套系统进行协同。
:DSL 是在特定的场景中自创一套语法,通过实现内置函数来扩展能力范围,比如 Splunk Knowledge Object,InfluxDB Flux等等。其目标是将特定的场景封装掉具体实现细节,达到使用时极简化的效果。但是其有两个弱点:一是用户需要学习一套新的非通用语法,对于新用户上手不友好;二是可扩展性很难保障,因为每一个功能都封装对应的内置函数成本实在太高,对于商业化产品来说开发内置函数性价比太低,对于开源方案来说功能迭代、性能保证都是不确定的。
对于数据计算平台而言,用户侧的易用性保证和系统自身的高性能往往是一对矛盾,这也是数据加工服务实现中最大的技术难点。举个例子,我们通过dt_parse函数解析时间字符串,需要能够实现用户无需指定时间内容的格式,而是有系统自动检测。这个功能有2方面的必要性:第一点是简化用户的配置步骤,时间格式的拼装比较繁琐;另一个更重要的点是日志数据很不规范,同一个数据源中可能存在不同的时间格式,甚至有多少种时间格式用户自己也无法确定,这种情况用户的逻辑几乎无法通过简洁的代码逻辑实现。
本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。
本文介绍了阿里集团A+流量分析平台的日志查询优化方案,针对万亿级日志数据的写入与查询挑战,提出基于Flink、Paimon和StarRocks的技术架构。通过Paimon存储日志数据,结合StarRocks高效计算能力,实现秒级查询性能。具体包括分桶表设计、数据缓存优化及文件大小控制等措施,解决高并发、大数据量下的查询效率问题。最终,日志查询耗时从分钟级降至秒级,显著提升业务响应速度,并为未来更低存储成本、更高性能及更多业务场景覆盖奠定基础。
基于阿里云SelectDB,MiniMax构建了覆盖国内及海外业务的日志可观测中台,总体数据规模超过数PB,日均新增日志写入量达数百TB。系统在P95分位查询场景下的响应时间小于3秒,峰值时刻实现了超过10GB/s的读写吞吐。通过存算分离、高压缩比算法和单副本热缓存等技术手段,MiniMax在优化性能的同时显著降低了建设成本,计算资源用量降低40%,热数据存储用量降低50%,为未来业务的高速发展和技术演进奠定了坚实基础。